גנסן הואנג מנכל אנבידיה
צילום: טוויטר

האם ה-AI הגיע לתקרת הזכוכית: איך יראו השדרוגים הבאים בצ'אטים?

העלויות הכבדות שב"אימון" הכלים על מאגרים גדולים מביא לתפנית - "קטן יותר, אבל חכם יותר"; איך והאם זה ישפיע על אנבידיה?
איציק יצחקי | (1)

שנתיים לאחר ההשקה של ChatGPT, שהותירה את העולם נפעם, שוק הבינה המלאכותית מתמודד עם קשיי גדילה. מודלי שפה גדולים (LLM) שהיוו את הבסיס ליכולות המתקדמות של ChatGPT והצ'אטים הנוספים, נמצאים מול  מגבלות טכנולוגיות וגם כלכליות. טכנולוגיות כי קשה לשפר את היכולות הטכנולוגיות כפי שהיה בעבר. הקפיצה מדור לדור תבטא שיפורים מינורים יותר. וכלכלית כי העלויות של הפירמות המשתמשות כדי לייצר כלי עבודה גבוהות מאוד. 

התפיסה היא שככל שתהליך הלמידה רחב יותר וגדול יותר, ככל מאמנים יותר את הכלי כך הוא טוב יותר. הגודל של המודלים האלו, היה עד כה מנוע הצמיחה העיקרי. אבל הוא מתחיל להיתפס בזמן האחרון כעוצר התקדמות כשיש חלופות - במקום לאמן וללמד את המכונה על פני כמויות עצומות של חומר ומידע, אפשר לעשות זאת חכם יותר על פני פחות מידע. לשם זה הולך, ויש לזה משמעויות על כל עולם הבינה המלאכותית והמשתמשים. 

 

גודל מול מהירות: מה הבעיה האמיתית?

מודלי שפה גדולים כמו GPT-4, מתייחסים למערכות מתקדמות שמכילות מיליארדי פרמטרים, אותם "כפתורים" המותאמים במהלך האימון כדי לייצר את היכולת לשפה טבעית. אבל גודל כזה אינו מגיע בחינם. אימון של מודל כמו GPT-4 דרש כמות אנרגיה עצומה, שמשתווה לצריכת החשמל של 50 בתים בארה"ב למשך 100 שנה. העלויות הכלכליות של אימון דור המודלים הבא צפויות להגיע למיליארדי דולרים, והאתגר הטכנולוגי המורכב הופך את ההשקעה הזו לפחות כדאית.

הבעיה אינה רק בעלות. ככל שהמודלים גדלים, נדרש זמן רב יותר לאמן אותם ולהריץ אותם, וכך הם הופכים לאיטיים ובלתי יעילים למשתמשי הקצה. לדוגמה, במודלים מהדור הנוכחי, זמני התגובה ארוכים יותר, והצרכים האנרגטיים המוגברים מקשים על הפעלתם בקנה מידה רחב. במילים אחרות, הגודל כבר לא מיתרגם לשיפור משמעותי, והמודלים החדשים לא מצליחים להציג קפיצה טכנולוגית דומה לזו שנרשמה בעבר.

האם ההתקדמות מאטה?

בהשוואה לעשור הקודם, הקצב שבו שוק הבינה המלאכותית מצליח לייצר פריצות דרך גדולות אכן מאט. בעבר, יותר פרמטרים במודל היו שווים לשיפור דרמטי בביצועים. אבל היום, נראה שהגענו לגבול. הדור הבא של מודלים עשוי לדרוש כמויות עצומות של כוח חישובי ואנרגיה מבלי לספק שיפור משמעותי.

בעיה נוספת היא המחסור בטקסטים באיכות גבוהה לאימון. רוב המידע הזמין באינטרנט כבר נוצל, והיכולת לשפר את המודלים מוגבלת על ידי האיכות והכמות של נתוני האימון.

כמו כן, העלויות אינן רק באימון המודלים אלא גם בהרצתם. "עלויות ההיסק" (inference costs) עולות ככל שהמודל גדול יותר, ומעכבות את היכולת להשתמש בו בצורה רווחית.

קיראו עוד ב"BizTech"

 

הפתרון: יותר חכם, יותר קטן

לאור האתגרים הללו, חברות מובילות כמו OpenAI, גוגל ואנטרופיק עוברות להתמקד בפתרונות שמטרתם לשפר מודלים קיימים במקום לייצר מודלים גדולים יותר. שיטה אחת, המכונה test-time compute, מאפשרת למודל "לחשוב" יותר זמן לפני מתן תשובה. כך, במקום להשקיע בעוצמת עיבוד גדולה יותר, המודל מנצל זמן עיבוד נוסף כדי לשפר את דיוק התשובה.

הגישה הזו כבר מיושמת במודלים חדשים כמו o1 של OpenAI, שמסוגלים לפתור בעיות מורכבות יותר, כמו מתמטיקה ותכנות, באמצעות תהליך עיבוד ארוך יותר. כך, ניתן להשיג שיפור משמעותי בביצועים מבלי להגדיל את גודל המודל. זה אתגר גדול, ונראה שזה יהיה המפתח והמרוץ הבא - מי יודע לפתח צ'אט חכם ולא מי יודע לפתח צ'אט שרץ על דטה גדול.

 

מה זה אומר על יצרניות השבבים?

המעבר מ"גודל" ל"יעילות" עשוי לשנות באופן מהותי את שוק השבבים. עד כה, הדרישה למודלים גדולים יצרה ביקוש אדיר לשבבים רבי עוצמה של חברות כמו אנבידיה. אולם, עם המעבר למודלים קטנים יותר וממוקדים, ייתכן שנראה ירידה בביקוש לשבבים מסוג זה. במקום זאת, עשוי לעלות הביקוש לשבבים שמיועדים להרצה יעילה של מודלים. 

המשמעות לצ'אטים היא שהשדרוגים הבאים יהיו איטיים יותר מבחינה טכנולוגית, הממשעות לאנביידה שייתכן שמתישהו הצמיחה המרשימה במכירות תאט. הממשעות לקהל שהמהפכה הזו תיקח זמן. לא הגענו עדיין לתקרת זכוכית, יש עוד הרבה להשתפר. למעשה, ייתכן שאנחנו בעיצומו של מעבר לתפיסה חדשה של חדשנות. במקום להגדיל מודלים, החברות ממקדות את המאמצים בשיפור תהליכי עיבוד, פיתוח שבבים ייעודיים, ושילוב טכניקות חכמות שמאפשרות להשיג יותר בפחות משאבים.

התוצאה עשויה להיות מעבר מעולם שבו כמה "כוכבי על" כמו GPT-4 שולטים בשוק, ליקום שלם של מודלים קטנים וממוקדים, שכל אחד מהם מתמחה בפתרון בעיה ספציפית. גישה זו לא רק תייעל את התעשייה, אלא גם תהפוך אותה לנגישה יותר עבור עסקים קטנים ומשתמשים פרטיים.

תגובות לכתבה(1):

הגב לכתבה

השדות המסומנים ב-* הם שדות חובה
  • 1.
    לרון 18/11/2024 08:28
    הגב לתגובה זו
    שניפרצו בהמשך
יואב שפרינגר וגלעד עזרא, מייסדים Apptor.ai צילום פרטייואב שפרינגר וגלעד עזרא, מייסדים Apptor.ai צילום פרטי
סטארטאפ להכיר

אין לנו מתחרים- הדרך להתחרות זה אם הלקוחות יתחילו לפתח את המוצר בעצמם

שיחה עם יואב  שפרינגר- המנכ"ל ושותף מייסד של  Apptor.ai



הדס ברטל |

ספר בקצרה על עצמך:

אני במקור מבית חנן בצפון. בצבא שירתי ב-8200, שם גם פגשתי את השותף שלי, גלעד עזרא, ובזמן השירות, עבדנו על פיתוח מודלים של פרדיקציה לצבא כדי לזהות התנהגויות, אבל הרעיון זה להתעסק ב-predictable AI. אחרי הצבא הייתי בפלייטיקה בעולמות ה-AI retention. את הסטארטאפ הקמנו במהלך המלחמה, והתחלנו לרוץ איתו ממש תוך כדי המילואים.

ספר על החברה ומניין בא הרעיון?

אלו דברים דומים שעשינו בצבא. חיפשנו איפה אפשר למקסם את מה שעשינו בצבא ולהשליך על שוק, שהוא ממש בלו אושן עבורנו ואין חברה שעושה משהו דומה. תעשיית ה- direct sales, שהיא מאוד אמריקאית ואנחנו בנינו כמה מודלים של פרדיקציה שעוזרים לחברות direct sales לייצר תקשורת טובה יותר עם הלקוחות שלהן. המודלים מזהים טוב יותר מה הלקוח רוצה לקנות, מה המוצר שכדאי להציע לו ומתי יספיק לקנות, כאשר המטרה היא לטרגט בצורה טובה יותר את הלקוחות דרך המודלים שאנחנו מריצים. זה דומה לאי קומרס אבל יש הבדלים כי דרך המכירה בחברות direct sales היא שונה מעט, ואותן חברות רואות את עצמן כתעשייה נפרדת. למשל הרבהלייף היא לקוחה שלנו, ואם ספורה מבחינים שאני עובד איתם, הם יחשבו "מעולה, חברה דומה לנו." לעומת זאת, אם הרבהלייף היו רואים שאני עובד עם ספורה הם היו חושבים שזה אי קומרס. בשנה אחת הגענו ללקוחות וחברות כמו הרבהלייף, שופ דוט קום, It works! Global ו-Immunotec.

אופן המכירה ב-direct sales זה דרך מפיצים שהם המשווקים את המוצרים של החברה. עד שאנחנו הופענו, כל החברות הללו היו בונות על המפיצים לעשות את עבודת השיווק והמכירות והכל היה קורה דרכם בלי ערוצים נוספים. המפיצים מביאים לקוחות והם מדברים עם לקוחות וכדומה. מה שקורה בפועל זה שמאחר וכיום יש עוד הרבה אלטרנטיבות לעשות הכנסה מ-gig economy ובגלל התחרות הרבה בשוק, אז המודל לפיו הם בונים רק על המפיצים כבר לא עובד. מה שאנחנו מביאים לשולחן זה שאנחנו מייצרים מודלים של פרדיקציה שעושים את הכל באופן אוטומטי, את ה-retention, ההמלצות על מוצרים כאשר אנחנו יודעים לזהות מה כל לקוח יקנה ומתי והחברות כבר לא צריכות לבנות על המפיצים אלא אנחנו עושים את זה בשבילם, הכל כבר הופך לאוטומטי.

מתי הוקמה וכמה עובדים?

קמנו ביולי 2024, אנחנו 10 עובדים, הרוב בישראל ואחת ביוטה.

מי המשקיעים?

זוהר גילון, יובל בר-גיל, ניר גרינברג, רן שריג, אפי כהן ועוד

הונאה ברשת (AI)הונאה ברשת (AI)

המלחמה בהונאות: TrueScontrol סטארט-אפ ישראלי יקבע אם האתר אמין; למה זה חשוב?

על רקע ההונאות והאכזבה משירותים ומוצרים שמקבלים ברשת האינטרנט, פותח מנגנון שיספק קוד אימון לאתרים ולאנשי מקצוע; המטרה: לצמצם את ההונאות בתחום הזה ולייצר לעסקים אמינים גושפנקא אובייקטיבית שתוכר על ידי הציבור

רן קידר |
נושאים בכתבה הונאה

בעשור האחרון הכלכלה הדיגיטלית צמחה בקצב מואץ, אך במקביל צמחה גם תופעה שפוגעת ישירות בשורה התחתונה של עסקים שמשתמשים בדיגיטל: הונאות שגורמות לשחיקת האמון ברשת. 

צרכנים נחשפים לאינספור אתרים, בעלי מקצוע ושירותים מקוונים אך מתקשים לדעת מי מהם אמין, מוסמך ובעל זהות ברורה. התוצאה היא לרוב היסוס, נטישת עסקאות ופגיעה בהכנסות של העסקים האלו. על הרקע הזה הוקם  הסטארט־אפ הישראלי TrueScontrol שמבקש להתמודד עם הבעיה דרך מתן ביטחון לגולשים. 

מנהלי החברה, גל חזיזה ושחר ישראל בוטבול מסבירים כי התופעה של בריחת לקוחות מעסקים בגל חוסר אמון הובילה אותם להבין שהציבור רוצה קוד אימון ולא להסתמך על הבטחות וה"יהיה בסדר" המוכר. הם רוצים לדעת שהעורך דין, יועץ מס, מכונאי, טכנאי מחשבים הוא אמין ואת זה הם מתכוונים לספק להם דרך  TrueScontrol. 

הם יצרו שכבה אוטומטית עם תוספת של אימות אנושי מול בעלי האתר ונותני השירותים וכך הם מעבדים והופכים את המידע שהתגבש אצלם למדד אמון. 


אובדן אמון = אובדן הכנסות


מחקרים רבים מצביעים על קשר ישיר בין רמת אמון לבין החלטות רכישה. אתרים שאינם נתפסים כאמינים סובלים משיעורי נטישה גבוהים, יחס המרה נמוך ופגיעה במוניטין לטווח ארוך. זה נכון לכל סוגי האתרים, גם אתרי תוכן וגם אתרים של אנשי מקצוע. בעולמות שבהם השירות ניתן מרחוק כמו: מסחר מקוון, ייעוץ, רפואה, משפטים והנדסה, חוסר הוודאות הופך לחסם כלכלי של ממשעסקים לגיטימיים נאלצים כיום "להוכיח את עצמם" שוב ושוב רק משום שהצרכן אינו יודע להבדיל בינם לבין גורמים מתחזים וכאן הפתרון של  TrueScontrol יכול לספק להם מענה טוב.